Periprosthetic Hip Fractures

Meghan A. Whitmarsh-Brown, MD
Geoffrey S. Marecek, MD
Objectives

• Define periprosthetic and peri-implant fractures

• Accurately classify periprosthetic fractures at the hip

• Describe treatment strategies for periprosthetic and peri-implant fractures
Definitions

• Periprosthetic fracture
 • A fracture about a prosthesis (e.g. arthroplasty stem)

• Peri-implant fracture
 • A fracture adjacent to a surgical implant (e.g. plate, medullary nail)
Periprosthetic Fractures of the “Hip”

• Proximal Femoral Periprosthetic
 • Interprosthetic

• Acetabular Periprosthetic

• Proximal Femoral Peri-Implant
Periprosthetic Fractures of the Proximal Femur

• Occur around hip arthroplasty stems and/or cement mantles

• Incidence varies, 0.1-18%\(^1\)

• Etiology - bimodal distribution:
 • Elderly: Low energy MOI (fall from standing height)
 • Young: High-energy trauma (sport, MVC, etc; <10% reported cases\(^2\))
Periprosthetic Fractures of the Proximal Femur

• Risk factors:
 • Demographics:
 • Increased age, female sex, osteoporosis, inflammatory arthropathy, altered bony morphology
 • Surgical:
 • Press-fit stem – 1.2-5.4% incidence\(^3\)
 • Anterior approach – 2.5-10% incidence\(^4\)
 • Long-stem implants
 • Impaction grafting\(^{1,3}\)
Periprosthetic Fractures of the Proximal Femur

• 30-day mortality around 3% in multiple series

• Mortality higher when revision performed for fracture than for other reasons
Classification

• Early systems classify by anatomic region

• AAOS, 1990
 • Does not consider implant stability

• Kelley, 1994
 • Considers stem stability

• Poor utility
Classification

• Vancouver Classification

• Intraoperative vs postoperative

• Suggests treatment strategy

• Improved postop outcomes after adoption

Vancouver Classification

• A – trochanteric
 • G, greater
 • L, lesser

• B – involving stem
 • 1, Well-fixed prosthesis
 • 2, Loose prosthesis
 • 3, Loose prosthesis, poor bone stock

• C – well below stem

Intraoperative Fractures

• Incidence approx 1% primary THA, 7.8% revision THA

• Uncemented > Cemented stems
 • 2-7x increased rate of fx compared to cemented stems

• Risk factors:
 • Stem morphology
 • Bone morphology
 • Approach
 • Female sex
 • Increased age
 • H/o prior hip surgery or revision THA
Intraoperative Fractures

- Vancouver Classification for Intraoperative Femur Fractures\(^1\)

<table>
<thead>
<tr>
<th>Classification</th>
<th>Metaphyseal</th>
<th>Diaphyseal</th>
<th>Distal to Stem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
</tr>
<tr>
<td>Fracture morphology</td>
<td>Cortical perforation</td>
<td>Undisplaced crack</td>
<td>Displaced or unstable</td>
</tr>
</tbody>
</table>

Intraoperative Fracture

<table>
<thead>
<tr>
<th>Classification</th>
<th>Metaphyseal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>Fracture morphology</td>
<td>Cortical perforation</td>
</tr>
</tbody>
</table>

Author's preferred treatment options

<table>
<thead>
<tr>
<th>Recognized fractures</th>
<th>Protected weight bearing or bone graft</th>
<th>Protected weight bearing or cerclage cables</th>
<th>ORIF with claw plate with conversion to long stem if implant unstable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrecognized fractures</td>
<td>Protected weight bearing</td>
<td>Protected weight bearing</td>
<td>ORIF with claw plate with revision to long stem if implant unstable</td>
</tr>
</tbody>
</table>

Intraoperative Fracture

<table>
<thead>
<tr>
<th>Classification</th>
<th>Diaphyseal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1</td>
</tr>
<tr>
<td>Fracture morphology</td>
<td>Cortical perforation</td>
</tr>
</tbody>
</table>

Author's preference

<table>
<thead>
<tr>
<th>Recognized fractures</th>
<th>Diaphyseal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1</td>
</tr>
<tr>
<td>Cortical strut with or without conversion to long stem implant</td>
<td>Lateral plate with conversion to long stem if implant unstable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unrecognized fractures</th>
<th>Diaphyseal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B1</td>
</tr>
<tr>
<td>Cortical strut</td>
<td>Lateral plate with revision to long stem if implant unstable</td>
</tr>
</tbody>
</table>

Intraoperative Fracture

<table>
<thead>
<tr>
<th>Classification</th>
<th>Distal to Stem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
</tr>
<tr>
<td>Fracture morphology</td>
<td>Cortical perforation</td>
</tr>
<tr>
<td></td>
<td>C2</td>
</tr>
<tr>
<td>Undisplaced crack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C3</td>
</tr>
<tr>
<td>Displaced or unstable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author's prefer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognized fractures</td>
<td></td>
</tr>
<tr>
<td>Cortical strut</td>
<td></td>
</tr>
<tr>
<td>Lateral plate</td>
<td></td>
</tr>
<tr>
<td>Lateral plate</td>
<td></td>
</tr>
</tbody>
</table>

Unrecognized fractures	
Cortical strut	Protected weight bearing or lateral plate
Lateral plate	
Vancouver Classification – Postoperative

Initial Evaluation

History

- PMH – critical to assess pt functionality
- Premorbid hip function
 - Pain, instability, weakness
 - Mid-thigh pain, start-up pain, progressive limb shortening – stem loosening
- RED FLAGS FOR INFECTION
 - History of wound-healing complications or delayed wound healing
 - Any hx of postop antibiotic therapy
 - Pain
 - Fever
 - Draining sinus

Physical

- May be limited by pain
- Note location of prior incision
- Leg length discrepancy
- Skin/soft tissue condition
- Neuromotor exam
Radiographic Workup

• XR
 • Standard AP/lat of affected hip and full femur
 • Low AP pelvis
 • Implant positioning
 • Polyethylene wear, osteolysis
 • PRIOR XR

• CT/MRI
 • Rarely indicated
Treatment Principles

• Nonoperative management is uncommon
 • Stable patterns
 • Poor surgical candidates

• Be prepared for several possible scenarios
 • Familiarized with extensile approaches, osteotomies
 • Ensure multiple implant options are available in-house
Treatment Principles

• Obtain intraoperative tissue cultures, even if preoperative risk of infection was low

• Postop early mobility is goal, but may require protected WB 6-12 wks until radiographic evidence of healing
Preop Planning

• Obtain index op report
 • Implant system used, any intraoperative abnormalities, etc

• Obtain postop, pre-morbid XR
 • Look for evidence of subsidence, malpositioning, etc

• Template
 • Consider including multiple systems or bail-out options

• Speak to the rep
 • Ensure all necessary equipment and systems are available in-house
Timing

- Increased mortality with surgical delay beyond 72 hours

- Work expeditiously to ensure the optimal
 - Surgeon
 - Implant availability
 - Team
Postop

• GOAL – WBAT for all fractures
 • May not be possible due to fixation, bone quality, implants etc
 • Alternative strategies – dual plating, nail/plate etc emerging

• Additional protocols (abduction, posterior hip) per surgeon preference

• Scant evidence in periprosthetic ”hip” fractures
Vancouver A

- A_L
 - observation for true LT
 - Cerclage + revision for large medial fragment

- A_G
 - observation if small
 - Internal fixation for large fragments
Example: AG

- Displaced trochanteric fragment reduced and fixed with claw plate
Example: A_L
Example: A_L

- Cerclage of fracture
- Prosthesis revision
- Plate spanning entire femur
Vancouver C

- Fix the fracture
- Don’t create new problems
 - Overlap implants
- No stress risers
- Plate the whole bone!!
Example: Vancouver C-analogous fracture
Vancouver B

Vancouver B1

• Don’t forget basic osteosynthesis principles

• Choose absolute or relative stability and create it

• Don’t disturb biology whenever possible

• Test stem intraoperatively and be prepared to revise
Vancouver B

REVISION

ARTHROPLASTY

(± INTERNAL FIXATION)

Vancouver B2/3

- Bypass fractures by at least 2 cortical diameters
 - Biomechanical data from canine models without fixation

- Don’t forget basic osteosynthesis principles

- Create a durable, stable construct
Fixation Mechanics

• Cerclage useful for re-creating tube or when fixation cannot be placed

• Be judicious

• Screws are biomechanically superior to cables
 • Need some BI cortical screws
 • Numerous proprietary options exist to facilitate this
Allograft Struts

• Should be reserved for when there is bone loss

• Inferior to internal fixation with plates/screws for simple patterns

• Increases infection risk and time to union in meta-analyses\(^1\)
Periprosthetic Acetabular Fractures

- Historical intraoperative fracture rate low (0.3% in Mayo series)
 - Rate up to 8.4% based on CT scans

- Postoperative fracture rate very low (0.07% in Mayo series)
Classification

• Peterson and Lewallen (1996)

• Type I: Component position unchanged, no pain with hip motion

• Type II: Radiographic loosening or significant hip pain
Treatment

• Stable cup
 • Intraop – augment with screws
 • Postop – limited weightbearing

• Unstable cup
 • Revision of cup +/- ORIF of acetabular fracture
Example: Stable Cup
Example: Unstable Cup
- Prosthesis revised

- ORIF of posterior column

- Flanged cup with fixation into anterior and posterior columns
Peri-Implant Fractures

• Treatment algorithm determined by 2 questions:
 • How is the fracture optimally treated?
 • Is the initial fracture healed?

• Prioritize optimal treatment of new fracture
 • Especially when prior fracture is healed

• If prior fracture not healed, adjust accordingly
 • Two fractures, two treatments
6 weeks, still w c/o pain 9/10
Re-admit
Summary

• Periprosthetic and peri-implant fractures are unique

• Periprosthetic fractures at the hip can be reliably classified

• Revision arthroplasty is necessary if the prosthesis is unstable