Pilon Fractures

Michael Leslie, DO FAOA
Associate Professor of Orthopaedics and Rehabilitation
Chief of Orthopaedic Trauma
Vice Chair of Quality and Safety
Yale School of Medicine
Goals

- Patient characteristics
- Radiographic interpretation
- Classification
- Emergent care
- Acute vs delayed definitive care
- Definitive stabilization
- Postoperative care
- Outcomes
Demographics

• 3-10% of tibial fractures
• 1% of all fractures
• 30-40 yrs age
• Males predilection
• Falls, motor vehicle collision, motor cycle collision
Patient Risk Factors for Infection

• Age
• DM
• Obesity
• Urinary incontinence
• Malnutrition
• Neurologic deficit
• MRSA colonization
• Revision surgery
• NSAIDs
• Blood transfusion
• Prolonged surgical time
• > 3 comorbid conditions
Low Energy Mechanism – “The Plafond Injury”

• Twisting mechanism without articular impaction
• The transition point from ankle fracture to pilon
• Associated with injuries at top of ski boots or skateboard injury
• The fracture begins extraarticular and might spiral into the joint
• Low risk of open fracture
• Low risk of severe soft tissue injury
High Energy Mechanism -- “Mortar and Pestle”

- Fall from height
- Violent impacts
- High risk of open fracture
- Expanded zone of injury
Radiographs

• AP, Lateral and Mortise for acute ankle injuries
 • Contralateral can help delineate anatomy of individual patient
 • Fibular length, contour of distal tibia, fibular position

• CT Scan
 • Mandatory prior to definitive stabilization
 • If staged consider waiting until reduction and/or external fixation
 • Pre I&D CT scan can be beneficial if a partial reduction can be achieved through open wounds
 • 3D rendition and prints can be helpful for macroscopic reconstruction
 • Soft tissue windows helpful for incarcerated tendons and neurovascular structures
Radiographs

- AP
- Mortise
- Lateral
Lateral distal tibial angle (LDTA)

Normal is 88 degrees
ADTA
Anatomic Distal Tibial Angle

ADTA = 86°
(83-89°)
Injury Radiograph Critical

Varus

Valgus

Axial Load
AO-OTA Classification

<table>
<thead>
<tr>
<th>Extraarticular</th>
<th>Partial Articular</th>
<th>Complete Articular</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Good</td>
<td>The Bad</td>
<td>The Ugly</td>
</tr>
</tbody>
</table>

Examples

<table>
<thead>
<tr>
<th>43-A1</th>
<th>43-A2</th>
<th>43-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>43-B1</th>
<th>43-B2</th>
<th>43-B3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>43-C1</th>
<th>43-C2</th>
<th>43-C3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AO-OTA 43C1-3
Emergent Care

• Evaluation of soft tissues
• Neurovascular evaluation
• Reduction
 • Improves vascularity
 • Pain control
 • Takes pressure off soft tissues
Open Fractures

- Soft tissue reduction
 - Skin can be invaginated in fracture site
- Valgus fracture pattern most commonly open (medially)
- Clothing and debris can be forced into wound
Open Fracture Treatment

• IV antibiotics and Td booster per institutional guidelines
• Reduce fracture
• Cover with sterile moist dressing
• Preparation for OR for debridement and probable external fixation
 • Primary closure if possible
 • Drain placement
 • Might not be able to open wound again so take advantage of open wounds
Open Fracture

• Basic open fracture guidelines
• Distal extremity nature nearly always requires free flap when not primarily closed
• Negative pressure wound care commonly used
 • Take care not to desiccate bone
 • Not recommended to change dressing on hospital floor
• Bead pouch approach with high dose antibiotics with little disadvantage
• Goal is plastic surgery coverage within 10 days
Blisters

- No uniform treatment algorithm
- Unroofing with Silvadene
 - Re epithelialization
- Don’t operate acutely, even when serous can compromise surgical field
Treatment Algorithms

Acute vs. Staged

Complications can be catastrophic
• 4 tenets in open treatment of pilon fractures.
 1) Anatomic reduction and fixation of associated fibular fracture
 2) Anatomic restoration of the articular surface
 3) Autologous bone grafting of metaphyseal defects
 4) Medial buttress plating to allow early motion.
North American Experience

- 55% risk of soft tissue complication vs. European experience
- Higher energy injuries in NA
- Developing options:
 - Limited ORIF with ex fix
 - Staged management with ex fix
 - Multiplanar external fixation
Multiplanar Ex Fix

Malunion
Nonunion
Pin site infection
Staged Ex Fix +/- ORIF of Fibula

• Sirkin et al. and Patterson & Cole
 • Fibular fixation and ex fix of plafond injury
 • Delayed definitive internal fixation until soft tissue recovery
• Acceptably low rate (0-5.1%) of soft tissue complications/infection
External Fixation

- Improve alignment
- Centrally located talus
- Slight joint distraction

Fibular ORIF

• Advantages
 • Improves stability of spanning frame
 • Allows soft tissue recovery
 • Indirect reduction of tibial components via ligamentotaxis

• Disadvantages
 • Malreduction can adversely affect pilon ORIF
 • Planned tibial incisions can be compromised
Fibular Follies

- Failure to attain length
- Ex fix pins within zone of injury
- Talus subluxation
- Incision too anterior to allow for tibial incisions
Fibular Malreduction

• Length or procurvatum/recurvatum
 • Often appears well aligned on AP radiograph

• Use of intramedullary fixation can obviate varus valgus and sagittal plane malreduction
 • Can leave rotational malreduction
Second Stage

- Post span CT scan helpful
- Surgical planning
 - Incarcerated tendons
- When to do?
 - 13-24 days most common
 - Planned tibial incisions should be wrinkled
- Reopening of traumatic wounds take extreme caution
- Fracture blisters should be re epithelialized
- Delayed need for flap coverage not uncommon
Pre-operative Planning

- Postoperative care
- Surgical goals
- Surgical approach
- Soft tissue considerations
- Implants
Goals

• Articular reconstruction is a given goal unless not reconstructable or the patient is unable to tolerate incisions

• Metaphysis
 • Reconstruction
 • Direct or Indirect
 • Bone grafting needed
Define **Articular** injury after Distraction

Goal:
1. Define Reduction & Fixation Strategy

Mandate:
1. Anatomic Reduction
2. Absolute Stability
Define **Extrarticular** Fracture Pattern

- Use of 3D surface rendering can be helpful along with 3D model prints
Pilon Access Fracture Map

Primary Fracture Lines → Main Fragments

Metaphyseal Fracture Pattern
Direct vs. Indirect Reduction

Simple → Absolute Stability
Complex → Relative Stability
Fixation Construct

• Fixation construct
• Anatomic articular reconstruction
• Plate located to resist initial fracture displacement vector
 • Varus deformity → Medial buttress
 • Valgus deformity → Lateral buttress
 • Anterior/posterior talar escape → Anterior/posterior buttress
Injury Radiograph Dictates the Plate Position
Understand the forces you need to resist

Varus = Medial
Valgus = Lateral
Anterior Buttress
Posterior Buttress
Surgical Approaches

• Fracture pattern
• Soft tissue injury
• Local anatomy.
Anteromedial Approach

- ~1 cm lateral to tibial crest proximally, parallel to the tibial crest
- At ankle joint, incision curves to the distal point of the medial malleolus
- Anterior compartment fascia incised between tibial crest and tibialis anterior tendon sheath. Do not violate the tendon sheath
- Anterior compartment is retracted laterally
- This allows the placement of plate support on medial face or along lateral tibia
Anteromedial Approach

Anterolateral Approach

- Incision is in line with Chaput’s tubercle to the midportion of 4th metatarsal
- Identify and protect the superficial peroneal nerve
- Incise fascia over anterior compartment
- Retract the anterior compartment medially
- Can access the anterior aspect of the fibula to avoid a lateral approach (and plate the anterior fibula)

Posterolateral

• Prone position
• Incise midway between Achilles and posterior border of fibula
• Identify sural
• Superficial interval
• Achilles and peroneals
• Deep interval
• FHL and peroneals
• Elevate the FHL off posterior tibia

https://otaonline.org/video-library/45036/procedures-and-techniques-multimedia/16731317/the-posterolateral-approach-for-fixation-of
Posterolateral

Posteromedial

- Incise between Achilles and posteromedial border tibia
- Flexor retinaculum incised
- Interval between posterior tibial tendon/flexor digitorum communis and flexor hallucis longus
- Neurovascular bundle between FDC and FHL

Posteromedial Approach

Combined Surgical Approaches

- Many patients will need a minimum of 2 incisions
- More than 2 with care as swelling in flap and incision breakdown possible
- Classically 7 cm skin bridge to prevent skin bridge necrosis
 - Not an absolute
 - Meticulous soft tissue handling and appropriate surgical timing
Angiosomes

- A 3D anatomic unit describing the skin and muscle supplied by a source artery
- Must be considered while selecting combined surgical approaches
- “Choke vessels” between angiosomes provide blood flow to adjacent angiosomes if source arteries are damaged.
 - Choke vessels require 4-10 days become widely patent

Taylor et al *Br. J. Plast. Surg.* 1990,
Attinger et al Plas, Recon Surg. 2006
Angiosomes

- Posterior tibial artery
 - Anterior border of tibia to midline of gastroc posteriorly
 - Posterior medial malleolar artery
 - Plantar foot

Attinger et al Plas, Recon Surg. 2006
• Anterior tibial artery
 • Anterior tibia to anterior border of fibula
 • Lateral malleolar artery
 • Anterior branch of medial malleolar artery
 • Dorsal foot

Attinger et al Plas, Recon Surg. 2006
Angiosomes

- Peroneal artery
 - Anterior border of lateral compartment to midline posteriorly
 - Anterior perforating branch
 - Lateral calcaneal artery
 - Plantar and lateral heel

Attinger et al Plas, Recon Surg. 2006
Fixation Considerations

• Minimum fixation for maximal stability
• Buttress can be more powerful than poorly located locked fixation construct
• Use percutaneous screw insertion
• Pre-contoured not always better as plates cannot be effectively contoured

• Locked fixation indications:
 • Small articular blocks that are already reconstructed
 • Large metaphyseal comminution
 • Osteoporotic patients
Intramedullary Fibula Fixation

• Percutaneous intramedullary fixation of fibula fractures can maximize surgical approach options.

Tibial Intramedullary Nail

• Can Improve early stability for healing of long regions of comminution in conjunction with lag screw and plate neutralization of articular blocks

• 60 year old male fall from deck
Unreconstructable

- 56 year old female polytrauma
- Open pilon, talus and calcaneus
- Bilateral clavicle fractures, multiple rib fractures
- Delayed presentation
- Wounds would require free flap if used for staged fixation
Staged management

- External fixation during irrigation debridement
 - Spanning K wire stabilization
- Primary closure
- Recovers from trauma
- Excise all cartilage and allow for consolidation of cancellous bone
- Return to OR for retrograde TTC nailing
Lack of articular surface
Primary Ankle Arthrodesis
Postoperative Care

- Well padded splint
- Ice
- Elevation
- Analgesia
- Goal is early motion if possible at 2-3 weeks
- DVT prophylaxis based on medical comorbidities and other trauma considerations
Rehabilitation

• Early mobilization
• Swelling control (compression)
• Achilles stretching
• Non weight bearing 8-12 weeks
• Physical therapy
Complications

• Wound breakdown
• Infection
• Malunion
• Nonunion
Malunion/Nonunion

- Malunion most common with intact fibula leading to varus malunion
- Malunion of joint
 - Occurs at time of surgery
 - Critical evaluation
 - Intraoperative CT scanning
- Malunion/Nonunion Metaphysis
 - Common
 - Likely related to watershed region or comminution
 - Bone grafting
 - Complex hardware removal and intramedullary nailing
Nonunion

- 69 year old female who fractured pilon 3 weeks after contralateral total knee replacement
Primary ORIF – Low Energy, Mild Swelling
Plate Fatigue at 3 months
Removal of HW, IMN – Healed at 3 months
Bone grafted with reamer contents from proximal canal aspirated at time of surgery
Outcomes

• Stiffness
• Declining function over time
• Osteophyte formation and arthrofibrosis with higher energy injuries
Outcomes

• Pollak et al. reported on 80 pilon pts (ORIF and exfix) at 3.2 years
 • Lower SF-36 scores in physical health and function than population
 • Low income and lower educational level more likely to have poor clinical outcomes
 • 2 or more co-morbidities had poorer outcomes

• Ex-fix treatment more likely to have
 • limited ROM
 • more pain
 • more ambulatory dysfunction

Pollak et al JBJS 2003
Conclusion

• Life changing injuries
• Challenging reconstructions at articular surface and metaphyseal complexity
• Staged approach common in high energy fractures
• Multiple surgical approaches needed
• Arthrodesis is viable option
Acknowledgements

• Clay Spitler, MD
• Matthew Graves, MD
• Steve Benirschke, MD
• Cory Collinge, MD
• Selected Images from: Court-Brown, C. et al. Rockwood & Greens Fractures in Adults. Philadelphia: Lippincott Williams & Wilkins, 2014
Bibliography

