Scapular Fractures

Jason Strelzow
MD, FRCSC
University of Chicago

All figures belong to Jason Strelzow, MD, FRCSC unless otherwise indicated
Objectives

• Appreciate the anatomy of the scapula
• Understand radiographic evaluation and diagnosis of scapular fractures
• Develop a framework for treatment options and indications
• Appreciate scope of injury, and outcomes following scapular fractures
Epidemiology

- Uncommon ~1% of all fractures and 3% of peri-shoulder injuries
 - 50% Scapular Body & Spine
 - 25% Glenoid Neck
 - 10% Glenoid Cavity
 - 7% Acromial
 - 7% Coracoid

- Likely uncommon due to:
 - Scapular mobility
 - Significant protection from thoracic cavity and musculature
Injury Mechanism

• High energy Trauma
 • Direct blows
 • Impact to shoulder
Injury Mechanism

- Direct Force
 - Most commonly
- Indirect Force
 - Fall with humeral head impaction into the glenoid

- 80-95% of scapular fractures associated with multiple or life-threatening injuries
Anatomy

• A - Body
• B - Glenoid Fossa (Articular Vault)
• Processes:
 • C - Coracoid Process
 • D - Acromial Process
Anatomy

- Suprascapular nerve (SSN) is main surface Neurovascular structures

- Related neurovascular anatomy:
 - Axillary Nerve (AXN)
 - Circumflex Suprascapular Artery (CSA)

Tornetta, Ricci. Rockwood and Green's Fractures in Adults, 9e, Wolters Kluwer Health Inc, 2020
Superior Shoulder Suspensory Complex (SSSC)

- Defined by Goss - JOT 1993
 - Critical in maintenance of the relationship of the upper extremity and axial skeleton throughout the scapula
- **Complex bone-soft tissue ring:**
 - Coracoid Process
 - Coracoclavicular ligaments
 - Distal Clavicle
 - AC joint
 - Acromial Process
- SSSC “supports” the Clavicle and Scapular body/spine in space
Superior Shoulder Suspensory Complex (SSSC)

- Defined by Goss - JOT 1993
Superior Shoulder Suspensory Complex (SSSC)

• A ‘double disruption’ of the SSSC leads to instability and extremity dysfunction

Evaluation

• Physical examination
 • Skin Abrasions, Bruising, Swelling
 • Painful diffusely, difficulty with motion
 • Careful NV examination required

• Radiographic evaluation
 • Mainstay of treatment
 • May first be appreciated on Trauma Series chest Xray
Imaging Evaluation

• Xray
 • Trauma Series —> True Scapular AP, Glenohumeral axillary and Scapular - Y view
 • Complex 3D anatomy presents difficulty
• Computer Tomography (CT)
 • 3D reconstructions with humeral subtraction can be very helpful
Imaging Evaluation
Imaging Evaluation

- Lateralized Scapular Body
 - Rarely medial glenoid
- Visible fracture lines
- 3D appreciation can be difficult

Imaging Evaluation

- Computer Tomography (CT)
 - 3D reconstructions with Humeral subtraction can be very helpful to understand anatomy & relationships
Imaging Evaluation
Imaging Measurements

• Glenopolar Angle (Θ)

 • Angle generated by the intersection of 2 lines:

 • 1) Inferior glenoid fossa to the superior lip of the glenoid

 • 2) Superior apex of the glenoid fossa to the inferior angle of the scapula
Imaging Measurements

• Medial / Lateral Displacement
 • Displaced between
 • Most lateral point of distal Fragment
 • Most lateral point of proximal fragment
Imaging Measurements

• Angulation
 • Angle generated by the intersection of 2 lines on Scapular Y view or CT reformat:
 • Line along proximal fragment
 • Line along distal fragment
CT Evaluation
Scapulothoracic Dissociation
(Lateral Dislocation of the Scapula)

• Rare disruption of the Scapulothoracic articulation
• Severe energy dissipation - commonly traction
 • Scapula essentially ‘torn away’ from the thoracic wall
• Associated with disruption of at least 1 of the three ‘joints’
 • Glenohumeral, Acromioclavicular, Sternoclavicular
• Associated with injury to the NV structures:
 • Subclavian/Axillary artery, Brachial plexus
Evaluation

- **Physical examination**
 - Vascular and/or neurologic deficit
 - High energy mechanism and significant soft tissue trauma to the shoulder

- **Radiographic evaluation**
 - Lateral displacement of scapula
 - >1cm from contralateral
 - Increased Scapular index (1.43)
 - Widely distraction clavicle fracture or SC joint
Glenoid Classification (Idaberg)

• Type I
 • a - Anterior rim
 • b - Posterior rim
• Type II - Through glenoid exiting inferior
• Type III - Through glenoid exiting medial to coracoid
• Type IV - Through Glenoid exiting medial scapula
• Type V
 • a - Combined II and III
 • b - Combined IV with comminuted acromion
 • c - Combined II, and Vb
• Type VI - Comminuted Glenoid
Coracoid

• Many on location of fracture (Eyres)
 • Type 1 - Tip
 • Type 2 - Shaft
 • Type 3 - Base

Acromial Classification

• Ogawa & Naniwa (1997)
 • Type 1 (Lateral Acromion)
 • Type II (Medial Acromion)
Scapular Classification

• 3 Parts: Fossa, Body, Processes
• Kappa 0.66 for Xray & 0.78 for CT
Scapular Classification

Locations:
- Scapula, **process**
 - 14A
- Scapula, **body**
 - 14B*
- Scapula, **glenoid fossa**
 - 14F*

* Qualifications for process fractures:
 - x Coracoid P1
 - y Acromion P2
 - z Both processes P3

(These qualifications may be added to any fracture coded as type B or type F)
Treatment Options

• Non-operative
 • Vast majority
• Operative
 • Specific indications
Non-op Treatment

- Most patients (>80%)
- Surrounding soft tissue provides splinting and prevents additional displacement
- Symptomatic treatment
- Early AAROM
- Close radiographic followup needed
- Most healing or healed by 6-8 weeks.
Operative Treatment

- Percutaneous
- Anterior ORIF
- Posterior ORIF
- MIPO
Indications

• Operative
 • Displaced injuries:
 • Displaced intra-articular gelnoid fractures involving >25% of the articular surface
 • Displaced Scapular Neck fractures
 • Scapular Process fractures:
 • Non-union or Concomitant operative scapular fracture
 • Symptomatic impingement or positioning
 • Comminuted Scapular spine fractures
 • Coracoid Fractures with > 1cm of displacement
 • Glenopolar Angle ≤ 22 degrees

Approaches

• Isolated Process
 • Coracoid - Superior Deltopectoral Approach
 • Acromial - Direct Spine Approach
• Isolated Fossa / Glenoid
 • Deltopectoral variant or Posterior Approach
• Combined or Body:
 • Judet and Variants
Coracoid Approaches

- Superior extension of the Deltopectoral approach
 - 4-5cm in length
 - Incision up to border of clavicle for full exposure and trajectory for fixation
- Isolation of Cephalic Vein and enter Mohrenheim's triangle
- Base of coracoid/glenoid involvement can be seen with Rotator Interval Split

Coracoid Approaches

• Operative Indications:
 • > 1cm displaced
 • Painful non-unions
 • Those associated with disruption of the SSSC

Acromial Approaches

• Incision along acromial spine angled towards anterior tip of the acromion
• Elevate & Reflect deltoid off the acromion to expose fracture as required
• Stout repair of Deltoid, Infraspinatous at end of case
Acromial Approaches

Judet Approach

- Traditional Judet Incision
- Modified Judet Incision

Judet Approach
Judet Approach
Classic Judet

- Scapular fossa musculature is completely lifted
- Wide exposure
 - HH - Humeral Head
 - IF - Infraspinatous
 - TM - Teres Minor
 - TR - Triceps
 - SGN - Spinoglenoid fossa

Modified Judet

- Infraspinatus **not** lifted
- Interval between IF & TM
 - HH - Humeral Head
 - IF - Infraspinatus
 - TM - Teres Minor
 - TR - Triceps
 - SGN - Spinoglenoid fossa

Modified Judet

- Comparison of Scapular exposures

- Many fracture patterns may not require complete exposure for accurate reduction

- Modified Judet sufficient for MIPO or fractures patterns that can be indirectly reduced
Visibility

- Additional exposure may be gained with Tenotomy of the Infraspinatous
- Described by Garlich et al. 2020

FIGURE 1. Pre-tenotomy exposure showing glenoid exposure. A, Capsule; B, glenoid; C, humeral head; D, infraspinatus; E, teres minor; F, deltoid. **Editor’s Note:** A color image accompanies the online version of this article.
Fixation

- Areas of Maximal fixation

Final product

• Incision typically heals well
• Robust blood supply
Outcomes

• Literature is limited but growing:
 • Goss 1995
 • Zlowodzki 2006
 • Lantry 2007
 • Herrera 2009
 • Tatora 2018
Outcomes

• Złowodzki et al 2006
 • Systemic Review of 520 Fractures
 • Good / excellent results with operative treatment of Glenoid fractures (82%)
 • Most (86%) scapular body fractures non-op with Good / Excellent results
 • Most (77%) glenoid neck fractures non-op with Good / Excellent results
Outcomes

• Tatora et al. 2018:
 • Retrospective ORIF Cohort of 66 pts mean of 7 year
 • Minimal residual pain scores
 • Majority > 90% returned to work
 • Small but noted shoulder stiffness compared to uninjured side
Complications

• Nerve injury (Traction on Supraspinous)
• Mechanical Failure
• Infection
• Shoulder Stiffness
• Hematoma
Case 1

- 45 yo Male MC accident
- Bilateral Shoulder injuries
- Obese
Case
Case
Case

- Bilateral ORIF
- Prone Positioning
Case 2

- 65yo M
- LHD - Fall from ladder
- Reduction in ED with multiple re-dislocations
- PmHx:
 - DM
 - EtOH
- Isolated injury
Case 2

- Fractures of:
 - Acromial
 - Coracoid
 - Anterior glenoid
5 months post-op

- ORIF - Glenoid (Eden Hybinette), Acromion & Subscap repair using a modified Sabre incision extending deltopectoral interval over the acromion and scapular spine
Case 3

- 38 yo M RHD MC Accident
- Isolated injury
- **Elected non-operative**
 - Displacement
 - Glenopolar
 - Angulation
• CT shows minimal Displacement but some lateralization
Case

• Returns at 4 weeks with increasing pain

• Repeat Imaging:
 • Worsening angulation
 • Minimal ongoing Lateralization
Summary

• Rare, high-energy injuries

• Index of suspicion for scapulothoracic dissociation

• Largely non-operatively treated with good outcomes

• Indications continue to refine but current best include:
 • Intra-articular gap or step > 4mm & > 25% glenoid involvement
 • “Medialization” > 20mm
 • Angular Deformity > 45%
 • Glenopolar Angle ≤ 22deg
 • Double disruption SSSC with ≥ 10mm displacement
References

References

References

References

References

References

